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INTRODUCTION

Let X be a compact Hausdorff space and let C(X) denote the set of real­
valued functions which are continuous on X. Let C(X) be normed in the
usual fashion, 11/11 = SUPxeX II (x) I .
If P is a closed linear subspace of qX), we set

d(/, P) = inf II p - III. (1)
peP

Let TI = {p E PI d(/, P) = III - p II}. If each/in C(X) has a best uniform
approximation in P, then the best approximation operator T is well-defined
on C(X).

In many cases, best approximations need not be unique; so the operator
T is a set-valued rather than a point-valued function. Thus, it is natural to ask
if the operator T can be approximated in some useful sense by a point­
valued function. In what follows, we give some conditions which guarantee
that T has a best approximation by a continuous point-valued function.

If g; is a point-valued function, g; : C(X) --->- P and F a set-valued function,
F: C(X) --->- 2P , then we define

a(g;(f), F(f» = sup II g;(f) - p II,
'I!eF(f)

p'(g;, F) = sup a(g;(f), F(f».
feC(X)

(2)

(3)

The definition of a is the natural one with respect to the supremum norm on
C(X). We call g;o a best approximation to F if p'(g;o, F) :(: p'(g;, F) for all
point-valued functions g;.
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Let A be a real positive scalar. Iff has more than one best approximation
then clearly the diameter of the set TAf is A times the diameter of Tf since
AP E TV whenever p E Tf Therefore, p'(rp, T) = 00 for all point functions
rp, so in order to obtain a sensible solution to the problem of approximating
T we must restrict the size of Tf To this end, let

C(X, R) = {f E C(X) Illfll < R, R > O}.

We now define

p(rp, F) = sup a(rp(.f), F(.f»
fEC(X.R)

(4)

and say rpo is a best approximation to F if p(rpo ,F) ::s;; p( rp, F) for all functions
rp mapping C(X, R) into P. It is noteworthy, that under the hypotheses of
Theorem 1, we will be able to show not only the existence of a function rpo
minimizing p(rp, T), but also that rpo may be taken to be continuous.

THE EXISTENCE OF A BEST ApPROXIMAnON FOR T

The proof of Theorem 1 is modeled to some extent on a recent result of
Olech [2] concerning best approximations to set-valued functions. His
theorem was proved for functions mapping into a uniformly convex Banach
space, but since the Banach space C(X) is not uniformly convex, our proof
departs considerably from his. We do retain the following notation of
Olech:

r(f, T) = inf a(p, Tj),
pEP

reT) = sup r(f, T).
fEC(X.R)

(5)

(6)

Let Y and Z be topological spaces and let F: Y ---+ 2Z • F is called upper
semicontinuous (u.s.c.) if{ y IF( y) C G} is open in Y for each open set G in Z
and lower semicontinuous (l.s.c.) if {y IF(y) n G =1= 0} is open in Y for
each open set G in Z. Let rp : Y ---+ Z; we call rp a selection for F if rp( y) E F( y)
for all y in Y. If Z is a linear topological space, we let K(Z) denote the set of
closed convex subsets of Z.

The following theorem of Michael [I] plays a key role in both the theorem
of Olech and our Theorem 1.

THEOREM (Michael). The following properties of T 1 spaces are equivalent:

(a) Y is paracompact;

(b) If E is a Banach space then every l.s.c. map F of Y into K(E) has a
continuous selection.
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THEOREM I. Suppose Tf ~ 0 for eachfand suppose Tis u.s.c. Then there
exists a continuous function f{Jo: C(X, R) ~F that minimizes p(f{J, T) among
all point functions f{J from C(X, R) to P.

Proo}: If f E qx, R) then p E Tf implies II p " ~ 2R. Therefore,
ref, T) ~ 4R which insures us that r(T) is finite. Let

B(p, t) = {qEP Illp - qll ~ n,
and for eachfin C(X, R), let

HU) = {p E PI TfC B(p, r(T)}. (7)

We will show for eachfthat H(f) is closed, convex, nonempty and that H is
l.s.c.

Given any A > 0,

a(p, TAJ) = a(p, ATJ) = sup II p - y II = sup II p - Az II = Aa(A-1p, TJ).
!leAT! zeT!

Thus, r(Af, T) = Ar(f, T). If f E C(X, R), then there is A > 1 such that
AIE C(X, R). This, together with r(t\f, T) = Ar(f, T) means that r(f, T) < r(T)
for each}: Furthermore, if a( p, TJ) ~ r(f, T) + €, € > 0, then

TfC B( p, r(f, T) + e).

Hence, H(f) is nonempty for each f in C(X, R). It is straightforward to
verify that HU) is closed and convex for each}:

To see H is l.s.c., let G be open in P and let Po E H(Io) n G. As
r(fo , T) < r(T) there is S > °and qo E H(Io) such that /I qo - y /I ~ r(T) - S
for all y E Tio. For °< A < 1, II Aqo + (1 - A) Po - y II ~ r(T) - AS. Let
ho = Aqo + (1 - A) Po, then if A is small we have ho E G and moreover
ho E H(Io) by convexity. Let B denote the open sphere centered at ho with
radius r(T). Since a(ho , TIo) ~ r(T) - AS then Tio C B. Since T is u.s.c.
there is fL > °such that Ilf - fo II < fL implies TfC B. So ho E HU) for allf
satisfying Ilf - Io /I < fL and therefore His l.s.c.

Clearly, P is a Banach space since it is a closed linear subspace of C(X).
Moreover, C(X, R) is paracompact so we can apply Michael's theorem to
assert the existence of a continuous function f{Jo such that f{JoU) E HU) for
all f E C(X, R). Thus, by (7), p(f{Jo , T) ~ p( f{J, T) for all point-valued func­
tions f{J : C(X, R)~ P.

The hypotheses of Theorem 1 can be met in many important cases. For
example, if P is finite dimensional then P is approximatively compact. Thus,
as a special case of a theorem of Singer [3], the operator Tis u.s.c.
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